Ir arriba
Información del artículo

A stochastic adaptive robust optimization approach for the generation and transmission expansion planning

L. Baringo, A. Baringo

IEEE Transactions on Power Systems Vol. 33, nº. 1, pp. 792 - 802

Resumen:

This paper proposes a stochastic adaptive robust optimization approach for the generation and transmission expansion planning problem. The problem is formulated under the perspective of a central planner, e.g., the transmission system operator, that aims at determining the generation and transmission expansion plans that minimize both the expansion and operation costs. This central planner builds the transmission facilities and promotes the building of the most suitable generating units among private profit-oriented investors. Uncertainties in the future peak demand and the future generation (fuel) cost are modeled using confidence bounds, while uncertainties in the demand variability and the production of stochastic units are modeled using a number of operating conditions. Results of an illustrative example and a case study based on the IEEE 118-bus test system show the effectiveness of the proposed approach.


Palabras Clave: Generation expansion, robust optimization, stochastic programming, transmission expansion, uncertainty.


Índice de impacto JCR y cuartil WoS: 6,807 - Q1 (2018); 6,500 - Q1 (2023)

Referencia DOI: DOI icon https://doi.org/10.1109/TPWRS.2017.2713486

Publicado en papel: Enero 2018.

Publicado on-line: Junio 2017.



Cita:
L. Baringo, A. Baringo, A stochastic adaptive robust optimization approach for the generation and transmission expansion planning. IEEE Transactions on Power Systems. Vol. 33, nº. 1, pp. 792 - 802, Enero 2018. [Online: Junio 2017]


pdf Previsualizar
pdf Solicitar el artículo completo a los autores